3.4.35 \(\int \frac {\text {sech}(c+d x)}{(a+b \sinh ^2(c+d x))^2} \, dx\) [335]

Optimal. Leaf size=106 \[ \frac {\text {ArcTan}(\sinh (c+d x))}{(a-b)^2 d}-\frac {(3 a-b) \sqrt {b} \text {ArcTan}\left (\frac {\sqrt {b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a-b)^2 d}-\frac {b \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )} \]

[Out]

arctan(sinh(d*x+c))/(a-b)^2/d-1/2*b*sinh(d*x+c)/a/(a-b)/d/(a+b*sinh(d*x+c)^2)-1/2*(3*a-b)*arctan(sinh(d*x+c)*b
^(1/2)/a^(1/2))*b^(1/2)/a^(3/2)/(a-b)^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3269, 425, 536, 209, 211} \begin {gather*} -\frac {\sqrt {b} (3 a-b) \text {ArcTan}\left (\frac {\sqrt {b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} d (a-b)^2}+\frac {\text {ArcTan}(\sinh (c+d x))}{d (a-b)^2}-\frac {b \sinh (c+d x)}{2 a d (a-b) \left (a+b \sinh ^2(c+d x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]/(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

ArcTan[Sinh[c + d*x]]/((a - b)^2*d) - ((3*a - b)*Sqrt[b]*ArcTan[(Sqrt[b]*Sinh[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(
a - b)^2*d) - (b*Sinh[c + d*x])/(2*a*(a - b)*d*(a + b*Sinh[c + d*x]^2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 3269

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\text {sech}(c+d x)}{\left (a+b \sinh ^2(c+d x)\right )^2} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \left (a+b x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=-\frac {b \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}+\frac {\text {Subst}\left (\int \frac {2 a-b-b x^2}{\left (1+x^2\right ) \left (a+b x^2\right )} \, dx,x,\sinh (c+d x)\right )}{2 a (a-b) d}\\ &=-\frac {b \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}+\frac {\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{(a-b)^2 d}-\frac {((3 a-b) b) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\sinh (c+d x)\right )}{2 a (a-b)^2 d}\\ &=\frac {\tan ^{-1}(\sinh (c+d x))}{(a-b)^2 d}-\frac {(3 a-b) \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a-b)^2 d}-\frac {b \sinh (c+d x)}{2 a (a-b) d \left (a+b \sinh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.29, size = 174, normalized size = 1.64 \begin {gather*} \frac {(2 a-b) \left (-\sqrt {b} (-3 a+b) \text {ArcTan}\left (\frac {\sqrt {a} \text {csch}(c+d x)}{\sqrt {b}}\right )+4 a^{3/2} \text {ArcTan}\left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )\right )+\left (-b^{3/2} (-3 a+b) \text {ArcTan}\left (\frac {\sqrt {a} \text {csch}(c+d x)}{\sqrt {b}}\right )+4 a^{3/2} b \text {ArcTan}\left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )\right ) \cosh (2 (c+d x))-2 \sqrt {a} (a-b) b \sinh (c+d x)}{2 a^{3/2} (a-b)^2 d (2 a-b+b \cosh (2 (c+d x)))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]/(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

((2*a - b)*(-(Sqrt[b]*(-3*a + b)*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[b]]) + 4*a^(3/2)*ArcTan[Tanh[(c + d*x)/2]
]) + (-(b^(3/2)*(-3*a + b)*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[b]]) + 4*a^(3/2)*b*ArcTan[Tanh[(c + d*x)/2]])*C
osh[2*(c + d*x)] - 2*Sqrt[a]*(a - b)*b*Sinh[c + d*x])/(2*a^(3/2)*(a - b)^2*d*(2*a - b + b*Cosh[2*(c + d*x)]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(304\) vs. \(2(94)=188\).
time = 1.77, size = 305, normalized size = 2.88

method result size
derivativedivides \(\frac {\frac {2 \arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a -b \right )^{2}}-\frac {2 b \left (\frac {-\frac {\left (a -b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {\left (a -b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}+\frac {\left (3 a -b \right ) \left (\frac {\left (-a +\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\left (a +\sqrt {-b \left (a -b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2}\right )}{\left (a -b \right )^{2}}}{d}\) \(305\)
default \(\frac {\frac {2 \arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a -b \right )^{2}}-\frac {2 b \left (\frac {-\frac {\left (a -b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {\left (a -b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}+\frac {\left (3 a -b \right ) \left (\frac {\left (-a +\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\left (a +\sqrt {-b \left (a -b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2}\right )}{\left (a -b \right )^{2}}}{d}\) \(305\)
risch \(-\frac {b \,{\mathrm e}^{d x +c} \left ({\mathrm e}^{2 d x +2 c}-1\right )}{d \left (a -b \right ) a \left (b \,{\mathrm e}^{4 d x +4 c}+4 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+b \right )}+\frac {i \ln \left ({\mathrm e}^{d x +c}+i\right )}{\left (a -b \right )^{2} d}-\frac {i \ln \left ({\mathrm e}^{d x +c}-i\right )}{\left (a -b \right )^{2} d}+\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{b}-1\right )}{4 a \left (a -b \right )^{2} d}-\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{b}-1\right ) b}{4 a^{2} \left (a -b \right )^{2} d}-\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{b}-1\right )}{4 a \left (a -b \right )^{2} d}+\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{b}-1\right ) b}{4 a^{2} \left (a -b \right )^{2} d}\) \(322\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(2/(a-b)^2*arctan(tanh(1/2*d*x+1/2*c))-2*b/(a-b)^2*((-1/2*(a-b)/a*tanh(1/2*d*x+1/2*c)^3+1/2*(a-b)/a*tanh(1
/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4-2*a*tanh(1/2*d*x+1/2*c)^2+4*b*tanh(1/2*d*x+1/2*c)^2+a)+1/2*(3*a-b)*(1/
2*(-a+(-b*(a-b))^(1/2)+b)/a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)
/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/2*(a+(-b*(a-b))^(1/2)-b)/a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*
b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-(b*e^(3*d*x + 3*c) - b*e^(d*x + c))/(a^2*b*d - a*b^2*d + (a^2*b*d*e^(4*c) - a*b^2*d*e^(4*c))*e^(4*d*x) + 2*(2
*a^3*d*e^(2*c) - 3*a^2*b*d*e^(2*c) + a*b^2*d*e^(2*c))*e^(2*d*x)) + 2*arctan(e^(d*x + c))/(a^2*d - 2*a*b*d + b^
2*d) - 2*integrate(1/2*((3*a*b*e^(3*c) - b^2*e^(3*c))*e^(3*d*x) + (3*a*b*e^c - b^2*e^c)*e^(d*x))/(a^3*b - 2*a^
2*b^2 + a*b^3 + (a^3*b*e^(4*c) - 2*a^2*b^2*e^(4*c) + a*b^3*e^(4*c))*e^(4*d*x) + 2*(2*a^4*e^(2*c) - 5*a^3*b*e^(
2*c) + 4*a^2*b^2*e^(2*c) - a*b^3*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1068 vs. \(2 (94) = 188\).
time = 0.45, size = 2143, normalized size = 20.22 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[-1/4*(4*(a*b - b^2)*cosh(d*x + c)^3 + 12*(a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^2 + 4*(a*b - b^2)*sinh(d*x +
 c)^3 + ((3*a*b - b^2)*cosh(d*x + c)^4 + 4*(3*a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (3*a*b - b^2)*sinh(d*
x + c)^4 + 2*(6*a^2 - 5*a*b + b^2)*cosh(d*x + c)^2 + 2*(3*(3*a*b - b^2)*cosh(d*x + c)^2 + 6*a^2 - 5*a*b + b^2)
*sinh(d*x + c)^2 + 3*a*b - b^2 + 4*((3*a*b - b^2)*cosh(d*x + c)^3 + (6*a^2 - 5*a*b + b^2)*cosh(d*x + c))*sinh(
d*x + c))*sqrt(-b/a)*log((b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - 2*(2*a +
 b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 - (2*a + b)*cos
h(d*x + c))*sinh(d*x + c) + 4*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3 - a*c
osh(d*x + c) + (3*a*cosh(d*x + c)^2 - a)*sinh(d*x + c))*sqrt(-b/a) + b)/(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)
*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*
x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)) - 8*(a*b*cosh(d*x + c)^4 + 4*a*
b*cosh(d*x + c)*sinh(d*x + c)^3 + a*b*sinh(d*x + c)^4 + 2*(2*a^2 - a*b)*cosh(d*x + c)^2 + 2*(3*a*b*cosh(d*x +
c)^2 + 2*a^2 - a*b)*sinh(d*x + c)^2 + a*b + 4*(a*b*cosh(d*x + c)^3 + (2*a^2 - a*b)*cosh(d*x + c))*sinh(d*x + c
))*arctan(cosh(d*x + c) + sinh(d*x + c)) - 4*(a*b - b^2)*cosh(d*x + c) + 4*(3*(a*b - b^2)*cosh(d*x + c)^2 - a*
b + b^2)*sinh(d*x + c))/((a^3*b - 2*a^2*b^2 + a*b^3)*d*cosh(d*x + c)^4 + 4*(a^3*b - 2*a^2*b^2 + a*b^3)*d*cosh(
d*x + c)*sinh(d*x + c)^3 + (a^3*b - 2*a^2*b^2 + a*b^3)*d*sinh(d*x + c)^4 + 2*(2*a^4 - 5*a^3*b + 4*a^2*b^2 - a*
b^3)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b - 2*a^2*b^2 + a*b^3)*d*cosh(d*x + c)^2 + (2*a^4 - 5*a^3*b + 4*a^2*b^2 - a
*b^3)*d)*sinh(d*x + c)^2 + (a^3*b - 2*a^2*b^2 + a*b^3)*d + 4*((a^3*b - 2*a^2*b^2 + a*b^3)*d*cosh(d*x + c)^3 +
(2*a^4 - 5*a^3*b + 4*a^2*b^2 - a*b^3)*d*cosh(d*x + c))*sinh(d*x + c)), -1/2*(2*(a*b - b^2)*cosh(d*x + c)^3 + 6
*(a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^2 + 2*(a*b - b^2)*sinh(d*x + c)^3 + ((3*a*b - b^2)*cosh(d*x + c)^4 +
4*(3*a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (3*a*b - b^2)*sinh(d*x + c)^4 + 2*(6*a^2 - 5*a*b + b^2)*cosh(d
*x + c)^2 + 2*(3*(3*a*b - b^2)*cosh(d*x + c)^2 + 6*a^2 - 5*a*b + b^2)*sinh(d*x + c)^2 + 3*a*b - b^2 + 4*((3*a*
b - b^2)*cosh(d*x + c)^3 + (6*a^2 - 5*a*b + b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(b/a)*arctan(1/2*sqrt(b/a)*
(cosh(d*x + c) + sinh(d*x + c))) + ((3*a*b - b^2)*cosh(d*x + c)^4 + 4*(3*a*b - b^2)*cosh(d*x + c)*sinh(d*x + c
)^3 + (3*a*b - b^2)*sinh(d*x + c)^4 + 2*(6*a^2 - 5*a*b + b^2)*cosh(d*x + c)^2 + 2*(3*(3*a*b - b^2)*cosh(d*x +
c)^2 + 6*a^2 - 5*a*b + b^2)*sinh(d*x + c)^2 + 3*a*b - b^2 + 4*((3*a*b - b^2)*cosh(d*x + c)^3 + (6*a^2 - 5*a*b
+ b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(b/a)*arctan(1/2*(b*cosh(d*x + c)^3 + 3*b*cosh(d*x + c)*sinh(d*x + c)
^2 + b*sinh(d*x + c)^3 + (4*a - b)*cosh(d*x + c) + (3*b*cosh(d*x + c)^2 + 4*a - b)*sinh(d*x + c))*sqrt(b/a)/b)
 - 4*(a*b*cosh(d*x + c)^4 + 4*a*b*cosh(d*x + c)*sinh(d*x + c)^3 + a*b*sinh(d*x + c)^4 + 2*(2*a^2 - a*b)*cosh(d
*x + c)^2 + 2*(3*a*b*cosh(d*x + c)^2 + 2*a^2 - a*b)*sinh(d*x + c)^2 + a*b + 4*(a*b*cosh(d*x + c)^3 + (2*a^2 -
a*b)*cosh(d*x + c))*sinh(d*x + c))*arctan(cosh(d*x + c) + sinh(d*x + c)) - 2*(a*b - b^2)*cosh(d*x + c) + 2*(3*
(a*b - b^2)*cosh(d*x + c)^2 - a*b + b^2)*sinh(d*x + c))/((a^3*b - 2*a^2*b^2 + a*b^3)*d*cosh(d*x + c)^4 + 4*(a^
3*b - 2*a^2*b^2 + a*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b - 2*a^2*b^2 + a*b^3)*d*sinh(d*x + c)^4 + 2*(
2*a^4 - 5*a^3*b + 4*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b - 2*a^2*b^2 + a*b^3)*d*cosh(d*x + c)^2 +
(2*a^4 - 5*a^3*b + 4*a^2*b^2 - a*b^3)*d)*sinh(d*x + c)^2 + (a^3*b - 2*a^2*b^2 + a*b^3)*d + 4*((a^3*b - 2*a^2*b
^2 + a*b^3)*d*cosh(d*x + c)^3 + (2*a^4 - 5*a^3*b + 4*a^2*b^2 - a*b^3)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}{\left (c + d x \right )}}{\left (a + b \sinh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)**2)**2,x)

[Out]

Integral(sech(c + d*x)/(a + b*sinh(c + d*x)**2)**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\mathrm {cosh}\left (c+d\,x\right )\,{\left (b\,{\mathrm {sinh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)*(a + b*sinh(c + d*x)^2)^2),x)

[Out]

int(1/(cosh(c + d*x)*(a + b*sinh(c + d*x)^2)^2), x)

________________________________________________________________________________________